Test Catalog

Test Id : CMITO

Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Diagnosing mitochondrial disease that results from variants in either nuclear-encoded genes or the mitochondrial genome

 

A second-tier test for patients in whom previous targeted gene variant analyses for specific mitochondrial disease-related genes were negative

 

Identifying variants known to be associated with mitochondrial disease, allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 221 nuclear genes and amplification of the entire mitochondrial genome by long-range polymerase chain reaction: AARS2, ABAT, ABCB7, ACACA, ACAD9, ACO2, AFG3L2, AGK, AIFM1, ALDH3A2, APOPT1 (COA8), APTX, ATP5F1A, ATP5F1E, ATPAF2, AUH, BCS1L, BOLA3, C12orf65 (MTRFR), CA5A, CARS2, CHAT, CHCHD10, CLPP, COA5, COA6, COA8 (APOPT1), COASY, COQ2, COQ4, COQ6, COQ7, COQ8A, COQ8B, COQ9, COX10, COX14, COX15, COX20, COX4I1, COX4I2, COX6A1, COX6A2, COX6B1, COX7B, COX8A, CPT1C, CYC1, D2HGDH, DARS2, DGUOK, DLAT, DLD, DNA2, DNAJC19, DNM1L, EARS2, ELAC2, ETFA, ETFB, ETFDH, ETHE1, FARS2, FASTKD2, FBXL4, FDX2, FDXR, FH, FOXRED1, FXN, GAMT, GARS1, GCDH, GDAP1, GFER, GFM1, GFM2, GLYCTK, GPT2, GTPBP3, HARS2, HIBCH, HK1, HSPD1, IARS2, IBA57, IDH2, INF2, ISCU, L2HGDH, LARS2, LIAS, LRPPRC, LYRM4, LYRM7, MARS2, MFF, MGME1, MICU1, MPC1, MPV17, MRPL3, MRPL44, MRPS16, MRPS2, MRPS22, MRPS7, MSTO1, MTFMT, MTO1, MTPAP, MTRFR (C12orf65), NARS2, NBAS, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA4, NDUFA9, NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFB3, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NFU1, NR2F1, NUBPL, OGDH, OPA1, OPA3, OXCT1, PANK2, PARS2, PC, PCK2, PDHA1, PDHB, PDHX, PDP1, PDSS1, PDSS2, PET100, PNKD, PNPT1, POLG, POLG2, PTRH2, PUS1, QARS1, RARS1, RARS2, RMND1, RNASEH1, RRM2B, RTN4IP1, SACS, SARS2, SCO1, SCO2, SDHAF1, SERAC1, SFXN4, SLC19A3, SLC25A1, SLC25A12, SLC25A19, SLC25A22, SLC25A26, SLC25A3, SLC25A4, SLC25A42, SLC25A46, SLC52A2, SLC9A6, SOD1, SPG7, SUCLA2, SUCLG1, SUGCT, SURF1, TACO1, TAFAZZIN (TAZ), TARS2, TAZ (TAFAZZIN), TFAM, TIMM8A, TK2, TMEM126A, TMEM126B, TMEM70, TOP3A, TPK1, TRIT1, TRMT10C, TRMU, TRNT1, TSFM, TTC19, TUFM, TWNK, TYMP, UQCC2, UQCRB, UQCRC2, UQCRQ, VARS2, WDR45, XPNPEP3, YARS2.

 

See Targeted Genes and Methodology Details for Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies in Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for mitochondrial disease.

 

Additional first-tier testing may be considered. For more information see Ordering Guidance.

Reflex Tests
Lists tests that may or may not be performed, at an additional charge, depending on the result and interpretation of the initial tests.

Test Id Reporting Name Available Separately Always Performed
CULFB Fibroblast Culture for Genetic Test Yes No

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

If skin biopsy is received, fibroblast culture will be added at an additional charge. If viable cells are not obtained, the client will be notified.

 

The following algorithms are available:

-Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm

-Neuromuscular Myopathy Testing Algorithm

Method Name
A short description of the method used to perform the test

Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Combined mtDNA+Nuclear Gene Panel

Aliases
Lists additional common names for a test, as an aid in searching

Alpers-Huttenlocher syndrome

Autosomal progressive external ophthalmoplegia

Barth syndrome

Chronic progressive external ophthalmoplegia

Coenzyme Q10 deficiency

Complex I deficiency

Complex II deficiency

Complex III deficiency

Complex IV deficiency

Complex V deficiency

CPEO

Cytochrome C Oxidase deficiency

Kearns-Sayre syndrome

Leber's hereditary optic neuropathy

Leigh syndrome

LHON

MELAS

MERRF

Mitochondrial depletion syndrome

Mitochondrial disease

Mitochondrial neurogastrointestinal encephalomyopathy

Mitochondrial nuclear genes

MNGIE

mtDNA

Myoclonic epilepsy with ragged red fibers

NARP

Neurogenic muscle weakness, ataxia, and retinitis pigmentosa

Next Gen Sequencing Test

Pearson syndrome

Pyruvate Dehydrogenase deficiency

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

If skin biopsy is received, fibroblast culture will be added at an additional charge. If viable cells are not obtained, the client will be notified.

 

The following algorithms are available:

-Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm

-Neuromuscular Myopathy Testing Algorithm

Specimen Type
Describes the specimen type validated for testing

Varies

Ordering Guidance

The diagnostic workup for a mitochondrial disorder may include testing to demonstrate elevations of the lactate-to-pyruvate ratio and an elevated growth differentiation factor 15 concentration. Consider LAPYP / Lactate Pyruvate Panel, Plasma and GDF15 / Growth Differentiation Factor 15, Plasma.

 

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

 

Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. See FMTT / Familial Mutation, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Shipping Instructions

Specimen preferred to arrive within 96 hours of collection.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with whole blood or dried blood spot testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Submit only 1 of the following specimens:

 

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Acceptable: Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated 4 days

 

Specimen Type: Skin biopsy

Supplies: Fibroblast Biopsy Transport Media (T115)

Container/Tube: Sterile container with any standard cell culture media (eg, minimal essential media, RPMI 1640). The solution should be supplemented with 1% penicillin and streptomycin.

Specimen Volume: 4-mm punch

Specimen Stability Information: Refrigerated (preferred)/Ambient

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.

 

Specimen Type: Cultured fibroblast

Container/Tube: T-25 flask

Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy from another laboratory. Cultured cells from a prenatal specimen will not be accepted.

Specimen Stability Information: Ambient (preferred)/Refrigerated (<24 hours)

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.

 

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing  (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

2. Molecular Genetics: Biochemical Disorders Patient Information (T527)

3. If not ordering electronically, complete, print, and send a Neurology Specialty Testing Client Test Request (T732) with the specimen.

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the Testing Laboratory

Blood: 1 mL; Blood spots: 2 spots; Skin biopsy or cultured fibroblasts: See Specimen Required

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Varies Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Diagnosing mitochondrial disease that results from variants in either nuclear-encoded genes or the mitochondrial genome

 

A second-tier test for patients in whom previous targeted gene variant analyses for specific mitochondrial disease-related genes were negative

 

Identifying variants known to be associated with mitochondrial disease, allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 221 nuclear genes and amplification of the entire mitochondrial genome by long-range polymerase chain reaction: AARS2, ABAT, ABCB7, ACACA, ACAD9, ACO2, AFG3L2, AGK, AIFM1, ALDH3A2, APOPT1 (COA8), APTX, ATP5F1A, ATP5F1E, ATPAF2, AUH, BCS1L, BOLA3, C12orf65 (MTRFR), CA5A, CARS2, CHAT, CHCHD10, CLPP, COA5, COA6, COA8 (APOPT1), COASY, COQ2, COQ4, COQ6, COQ7, COQ8A, COQ8B, COQ9, COX10, COX14, COX15, COX20, COX4I1, COX4I2, COX6A1, COX6A2, COX6B1, COX7B, COX8A, CPT1C, CYC1, D2HGDH, DARS2, DGUOK, DLAT, DLD, DNA2, DNAJC19, DNM1L, EARS2, ELAC2, ETFA, ETFB, ETFDH, ETHE1, FARS2, FASTKD2, FBXL4, FDX2, FDXR, FH, FOXRED1, FXN, GAMT, GARS1, GCDH, GDAP1, GFER, GFM1, GFM2, GLYCTK, GPT2, GTPBP3, HARS2, HIBCH, HK1, HSPD1, IARS2, IBA57, IDH2, INF2, ISCU, L2HGDH, LARS2, LIAS, LRPPRC, LYRM4, LYRM7, MARS2, MFF, MGME1, MICU1, MPC1, MPV17, MRPL3, MRPL44, MRPS16, MRPS2, MRPS22, MRPS7, MSTO1, MTFMT, MTO1, MTPAP, MTRFR (C12orf65), NARS2, NBAS, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA4, NDUFA9, NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFB3, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NFU1, NR2F1, NUBPL, OGDH, OPA1, OPA3, OXCT1, PANK2, PARS2, PC, PCK2, PDHA1, PDHB, PDHX, PDP1, PDSS1, PDSS2, PET100, PNKD, PNPT1, POLG, POLG2, PTRH2, PUS1, QARS1, RARS1, RARS2, RMND1, RNASEH1, RRM2B, RTN4IP1, SACS, SARS2, SCO1, SCO2, SDHAF1, SERAC1, SFXN4, SLC19A3, SLC25A1, SLC25A12, SLC25A19, SLC25A22, SLC25A26, SLC25A3, SLC25A4, SLC25A42, SLC25A46, SLC52A2, SLC9A6, SOD1, SPG7, SUCLA2, SUCLG1, SUGCT, SURF1, TACO1, TAFAZZIN (TAZ), TARS2, TAZ (TAFAZZIN), TFAM, TIMM8A, TK2, TMEM126A, TMEM126B, TMEM70, TOP3A, TPK1, TRIT1, TRMT10C, TRMU, TRNT1, TSFM, TTC19, TUFM, TWNK, TYMP, UQCC2, UQCRB, UQCRC2, UQCRQ, VARS2, WDR45, XPNPEP3, YARS2.

 

See Targeted Genes and Methodology Details for Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies in Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for mitochondrial disease.

 

Additional first-tier testing may be considered. For more information see Ordering Guidance.

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

If skin biopsy is received, fibroblast culture will be added at an additional charge. If viable cells are not obtained, the client will be notified.

 

The following algorithms are available:

-Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm

-Neuromuscular Myopathy Testing Algorithm

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

The mitochondrion occupies a unique position in eukaryotic biology. It is the site of energy metabolism, and it is the sole subcellular organelle that is composed of proteins derived from 2 genomes, mitochondrial and nuclear. A group of hereditary disorders due to variants in either the mitochondrial genome or nuclear mitochondrial genes have been well characterized.

 

The diagnosis of mitochondrial disease can be particularly challenging as the presentation can occur at any age, involve virtually any organ system, and be associated with widely varying severities. Due to the considerable overlap in the clinical phenotypes of various mitochondrial disorders, it is often difficult to distinguish these specific inherited disorders without genetic testing. This test utilizes massively parallel sequencing, also termed next-generation sequencing (NGS), to analyze 221 nuclear-encoded genes implicated in mitochondrial disease and to determine the exact sequence of the entire 16,569 base-pair mitochondrial genome.

 

The utility of this test is to assist in the diagnosis of mitochondrial diseases that result from variants in both nuclear encoded genes and in the mitochondrial genome. Those diseases involving nuclear genes include disorders of mitochondrial protein synthesis, coenzyme Q10 biosynthesis, respiratory chain complexes, and mitochondrial DNA (mtDNA) maintenance (ie, mtDNA depletion disorders). Disorders of the mitochondrial genome include those caused by point alterations, such as mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS), myoclonic epilepsy with ragged red fibers (MERRF), mitochondrial myopathy (MM), neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), Leigh syndrome, Leber hereditary optic neuropathy (LHON), and chronic progressive external ophthalmoplegia (CPEO). In addition to the detection of single base changes with these disorders, large deletions, such as those associated with Kearns-Sayre or Pearson syndromes, are also detected. In contrast to variants in nuclear genes, which are present in either 0, 1, or 2 copies, mitochondrial variants can be present in any fraction of the total organelles, a phenomenon known as heteroplasmy. Typically, the severity of disease presentation is a function of the degree of heteroplasmy. Individuals with a higher fraction of altered mitochondria present with more severe disease than those with lower percentages of altered alleles. The sensitivity for the detection of altered alleles in a background of wild-type (or normal) mitochondrial sequences by NGS is approximately 10%.

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

An interpretive report will be provided.

Interpretation
Provides information to assist in interpretation of the test results

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(1-2) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Clinical Correlations:
Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

 

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

 

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact a Mayo Clinic Laboratories genetic counselor at 800-533-1710.

 

Technical Limitations:
Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

 

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

 

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

 

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

 

Genes may be added or removed based on updated clinical relevance. Refer to the Targeted Genes and Methodology Details for Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies for the most up to date list of genes included in this test. For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

 

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

 

Reclassification of Variants:
At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time. Due to broadening genetic knowledge, it is possible that the laboratory may discover new information of relevance to the patient. Should that occur, the laboratory may issue an amended report.

 

Variant Evaluation:
Evaluation and categorization of variants is performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline.(1) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

 

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

 

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-424

2. McCormick EM, Lott MT, Dulik MC, et al: Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat. 2020 Dec;41(12):2028-2057

3. Munnich A, Rotig A, Cormier-Daire V, Rustin P: Clinical presentation of respiratory chain deficiency. In: Valle D, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, eds. The Online Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill; 2019. Accessed September 28, 2020. Available at  https://ommbid.mhmedical.com/content.aspx?bookid=2709&sectionid=225086827

4. Wallace DC, Lott MT, Brown MD, Kerstann K: Mitochondria and neuro-ophthalmologic diseases. In: Valle D, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA, eds. The Online Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill; 2019. Accessed September 28, 2020. Available at https://ommbid.mhmedical.com/content.aspx?bookid=2709&sectionid=225088522

5. Wong LJ: Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154-162

6. Barca E, Long Y, Cooley V, et al: Mitochondrial disease in North America: An analysis of the NAMDC Registry. Neurol Genet. 2020 Mar 2;6(2):e402

Method Description
Describes how the test is performed and provides a method-specific reference

Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Combined Mitochondrial Full Genome and Nuclear Gene Panel, Varies for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)

 

Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

 

NGS is also used to test for the presence of variants within the mitochondrial genome (includes 13 protein coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes) and to determine the mitochondrial haplogroup of the patient. Large deletions within the mitochondrial genome are first detected by gel electrophoresis (as size-shifted polymerase chain reaction bands), and the locations of the deletions in the mitochondrial DNA are then determined from the NGS data.

 

The haplogroup is computed using the software package HaploGrep and PhyloTree.(Kloss-Brandstatter A, Pacher D, Schonherr S, et al: HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat. 2011 Jan;32(1):25-32; van Oven M, Kayser M: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009 Feb;30[2]:E386-E394. Available at www.phylotree.org)

Genes analyzed: AARS2, ABAT, ABCB7, ACACA, ACAD9, ACO2, AFG3L2, AGK, AIFM1, ALDH3A2, APOPT1 (COA8), APTX, ATP5F1A, ATP5F1E, ATPAF2, AUH, BCS1L, BOLA3, C12orf65 (MTRFR), CA5A, CARS2, CHAT, CHCHD10, CLPP, COA5, COA6, COA8 (APOPT1), COASY, COQ2, COQ4, COQ6, COQ7, COQ8A, COQ8B, COQ9, COX10, COX14, COX15, COX20, COX4I1, COX4I2, COX6A1, COX6A2, COX6B1, COX7B, COX8A, CPT1C, CYC1, D2HGDH, DARS2, DGUOK, DLAT, DLD, DNA2, DNAJC19, DNM1L, EARS2, ELAC2, ETFA, ETFB, ETFDH, ETHE1, FARS2, FASTKD2, FBXL4, FDX2, FDXR, FH, FOXRED1, FXN, GAMT, GARS1, GCDH, GDAP1, GFER, GFM1, GFM2, GLYCTK, GPT2, GTPBP3, HARS2, HIBCH, HK1, HSPD1, IARS2, IBA57, IDH2, INF2, ISCU, L2HGDH, LARS2, LIAS, LRPPRC, LYRM4, LYRM7, MARS2, MFF, MGME1, MICU1, MPC1, MPV17, MRPL3, MRPL44, MRPS16, MRPS2, MRPS22, MRPS7, MSTO1, MTFMT, MTO1, MTPAP, MTRFR (C12orf65), NARS2, NBAS, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA4, NDUFA9, NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFB3, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NFU1, NR2F1, NUBPL, OGDH, OPA1, OPA3, OXCT1, PANK2, PARS2, PC, PCK2, PDHA1, PDHB, PDHX, PDP1, PDSS1, PDSS2, PET100, PNKD, PNPT1, POLG, POLG2, PTRH2, PUS1, QARS1, RARS1, RARS2, RMND1, RNASEH1, RRM2B, RTN4IP1, SACS, SARS2, SCO1, SCO2, SDHAF1, SERAC1, SFXN4, SLC19A3, SLC25A1, SLC25A12, SLC25A19, SLC25A22, SLC25A26, SLC25A3, SLC25A4, SLC25A42, SLC25A46, SLC52A2, SLC9A6, SOD1, SPG7, SUCLA2, SUCLG1, SUGCT, SURF1, TACO1, TAFAZZIN (TAZ), TARS2, TAZ (TAFAZZIN), TFAM, TIMM8A, TK2, TMEM126A, TMEM126B, TMEM70, TOP3A, TPK1, TRIT1, TRMT10C, TRMU, TRNT1, TSFM, TTC19, TUFM, TWNK, TYMP, UQCC2, UQCRB, UQCRC2, UQCRQ, VARS2, WDR45, XPNPEP3, YARS2 and mitochondrial genome

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Monday

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

28 to 42 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

Whole blood: 2 weeks (if available); Extracted DNA: 3 months; Blood spots:1 month

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

81460

81440

81465

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
CMITO Combined mtDNA+Nuclear Gene Panel In Process
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
617104 Test Description 62364-5
617105 Specimen 31208-2
617106 Source 31208-2
617107 Result Summary 50397-9
617108 Result 82939-0
617109 Interpretation 69047-9
618173 Additional Results In Process
617110 Resources 99622-3
617111 Additional Information 48767-8
617112 Method 85069-3
617113 Genes Analyzed 48018-6
617115 Released By 18771-6
617114 Disclaimer 62364-5

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | PHP Pdf | CMS Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports