Test Catalog

Test Id : TTST

Testosterone, Total, Mass Spectrometry, Serum

Useful For
Suggests clinical disorders or settings where the test may be helpful

Evaluating men with symptoms or signs of possible hypogonadism, such as loss of libido, erectile dysfunction, gynecomastia, osteoporosis, or infertility

 

Evaluating boys with delayed or precocious puberty

 

Monitoring testosterone replacement therapy

 

Monitoring antiandrogen therapy (eg, used in prostate cancer, precocious puberty, treatment of idiopathic hirsutism, male-to-female transgender disorders, etc.)

 

Evaluating women with hirsutism, virilization, and oligoamenorrhea

 

Evaluating women with symptoms or signs of possible testosterone deficiency

 

Evaluating infants with ambiguous genitalia or virilization

 

Diagnosing androgen-secreting tumors

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For more information see Steroid Pathways

Method Name
A short description of the method used to perform the test

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Testosterone, Total, S

Aliases
Lists additional common names for a test, as an aid in searching

Androgens

Testosterone, Total Serum

Testosterone, Total Only, Serum

Testosterone

Testosterone Group

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For more information see Steroid Pathways

Specimen Type
Describes the specimen type validated for testing

Serum Red

Necessary Information

Patient's age and sex are required.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Collection Container/Tube: Red top (serum gel/SST are not acceptable)

Submission Container/Tube: Plastic vial

Specimen Volume: 1 mL

Collection Instructions: Centrifuge and aliquot serum into a plastic vial.

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Forms

If not ordering electronically, complete, print, and send a General Request (T239) with the specimen.

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the Testing Laboratory

0.215 mL

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

Gross hemolysis Reject
Gross lipemia Reject
Gross icterus Reject

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Serum Red Refrigerated (preferred) 14 days
Frozen 60 days

Useful For
Suggests clinical disorders or settings where the test may be helpful

Evaluating men with symptoms or signs of possible hypogonadism, such as loss of libido, erectile dysfunction, gynecomastia, osteoporosis, or infertility

 

Evaluating boys with delayed or precocious puberty

 

Monitoring testosterone replacement therapy

 

Monitoring antiandrogen therapy (eg, used in prostate cancer, precocious puberty, treatment of idiopathic hirsutism, male-to-female transgender disorders, etc.)

 

Evaluating women with hirsutism, virilization, and oligoamenorrhea

 

Evaluating women with symptoms or signs of possible testosterone deficiency

 

Evaluating infants with ambiguous genitalia or virilization

 

Diagnosing androgen-secreting tumors

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For more information see Steroid Pathways

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Testosterone is the major androgenic hormone. It is responsible for the development of the male external genitalia and secondary sexual characteristics. In female patients, its main role is as an estrogen precursor. In both sexes, it exerts anabolic effects and influences behavior.

 

In men, testosterone is secreted by the testicular Leydig cells and, to a minor extent, by the adrenal cortex. In premenopausal women, the ovaries are the main source of testosterone with minor contributions by the adrenal glands and peripheral tissues. After menopause, ovarian testosterone production is significantly diminished. Testosterone production in testes and ovaries is regulated via pituitary-gonadal feedback involving luteinizing hormone (LH) and, to a lesser degree, inhibins and activins.

 

Most circulating testosterone is bound to sex hormone-binding globulin (SHBG), which, in men, is also called testosterone-binding globulin. A lesser fraction is albumin bound and a small proportion exists as free hormone. Historically, only free testosterone was thought to be the biologically active component. However, testosterone is weakly bound to serum albumin and dissociates freely in the capillary bed, thereby becoming readily available for tissue uptake. All non-SHBG-bound testosterone is therefore considered bioavailable.

 

During childhood, excessive production of testosterone induces premature puberty in boys and masculinization in girls. In women, excess testosterone production results in varying degrees of virilization, including hirsutism, acne, oligomenorrhea, or infertility. Mild-to-moderate testosterone elevations are usually asymptomatic in male patients but can cause distressing symptoms in female patients. The exact cause for mild-to-moderate elevations of testosterone often remains obscure. Common causes of pronounced elevations include genetic conditions (eg, congenital adrenal hyperplasia), adrenal, testicular, and ovarian tumors, and abuse of testosterone or gonadotrophins by athletes.

 

Decreased testosterone in female patients causes subtle symptoms. These may include some decline in libido and nonspecific mood changes. In male patients, it results in partial or complete degrees of hypogonadism. This is characterized by changes in male secondary sexual characteristics and reproductive function. The cause is either primary or secondary/tertiary (pituitary/hypothalamic) testicular failure. In men, there also is a gradual modest but progressive decline in testosterone production starting between the fourth and sixth decade of life. Since this is associated with a simultaneous increase of SHBG levels, bioavailable testosterone may decline more significantly than apparent total testosterone, causing nonspecific symptoms similar to those observed in testosterone-deficient women. However, severe hypogonadism, consequent to aging alone, is rare.

 

Measurement of total testosterone is often sufficient for diagnosis, particularly if it is combined with measurements of LH and follicle-stimulating hormone (LH / Luteinizing Hormone [LH], Serum and FSH / Follicle-Stimulating Hormone [FSH], Serum). However, these tests may be insufficient for diagnosis of mild abnormalities of testosterone homeostasis, particularly if abnormalities in SHBG (SHBG1 / Sex Hormone-Binding Globulin [SHBG], Serum) function or levels are present. Additional measurements of bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) or free testosterone (TGRP / Testosterone Total and Free, Serum) are recommended in this situation.

 

For more information see Steroid Pathways

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

Males

0-5 months: 75-400 ng/dL

6 months-9 years: <7-20 ng/dL

10-11 years: <7-130 ng/dL

12-13 years: <7-800 ng/dL

14 years: <7-1,200 ng/dL

15-16 years: 100-1,200 ng/dL

17-18 years: 300-1,200 ng/dL

> or =19 years: 240-950 ng/dL

Tanner Stages*

I (prepubertal): <7-20

II: 8-66

III: 26-800

IV: 85-1,200

V (young adult): 300-950

 

Females

0-5 months: 20-80 ng/dL

6 months-9 years: <7-20 ng/dL

10-11 years: <7-44 ng/dL

12-16 years: <7-75 ng/dL

17-18 years: 20-75 ng/dL

> or =19 years: 8-60 ng/dL

Tanner Stages*

I (prepubertal): <7-20

II: <7-47

III: 17-75

IV: 20-75

V (young adult): 12-60

 

*Puberty onset (transition from Tanner stage I to Tanner stage II) occurs for boys at a median age of 11.5 (+/-2) years and for girls at a median age of 10.5 (+/-2) years. There is evidence that it may occur up to 1 year earlier in obese girls and in African American girls. For boys, there is no definite proven relationship between puberty onset and body weight or ethnic origin. Progression through Tanner stages is variable. Tanner stage V (young adult) should be reached by age 18.

Interpretation
Provides information to assist in interpretation of the test results

In male patients:

Decreased testosterone levels indicate partial or complete hypogonadism. In hypogonadism, serum testosterone levels are usually below the reference range. The cause is either primary or secondary/tertiary (pituitary/hypothalamic) testicular failure.

 

Primary testicular failure is associated with increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and decreased total, bioavailable, and free testosterone levels. Causes include:

-Genetic causes (eg, Klinefelter syndrome, XXY males)

-Developmental causes (eg, testicular maldescent)

-Testicular trauma or ischemia (eg, testicular torsion, surgical mishap during hernia operations)

-Infections (eg, mumps)

-Autoimmune diseases (eg, autoimmune polyglandular endocrine failure)

-Metabolic disorders (eg, hemochromatosis, liver failure)

-Orchidectomy

 

Secondary/tertiary hypogonadism, also known as hypogonadotrophic hypogonadism, shows low testosterone and low, or inappropriately "normal" LH/FSH levels. Causes include:

-Inherited or developmental disorders of hypothalamus and pituitary (eg, Kallmann syndrome, congenital hypopituitarism)

-Pituitary or hypothalamic tumors

-Hyperprolactinemia of any cause

-Malnutrition

-Excessive exercise

-Cranial irradiation

-Head trauma

-Medical or recreational drugs (eg, estrogens, gonadotropin releasing hormone [GnRH] analogs, cannabis)

 

Increased testosterone levels:

-In prepubertal boys, increased levels of testosterone are seen in precocious puberty. Further workup is necessary to determine the cause of precocious puberty.

-In men, testicular or adrenal tumors or androgen abuse might be suspected if testosterone levels exceed the upper limit of the normal range by more than 50%.

 

Monitoring of testosterone replacement therapy:

Aim of treatment is normalization of serum testosterone and LH. During treatment with depot-testosterone preparations, trough levels of serum testosterone should still be within the normal range, while peak levels should not be significantly above the normal young adult range.

 

Monitoring of antiandrogen therapy:

Aim is usually to suppress testosterone levels to castrate levels or below (no more than 25% of the lower reference range value, typically <50% ng/dL).

 

In female patients:

Decreased testosterone levels may be observed in primary or secondary ovarian failure, analogous to the situation in men, alongside the more prominent changes in female hormone levels. Most women with oophorectomy have a significant decrease in testosterone levels.

 

Increased testosterone levels may be seen in:

-Congenital adrenal hyperplasia: Non-classical (mild) variants may not present in childhood, but during or after puberty. In addition to testosterone, multiple other androgens or androgen precursors, such as 17 hydroxyprogesterone (OHPG / 17-Hydroxyprogesterone, Serum), are elevated, often to a greater degree than testosterone.

-Prepubertal girls: Analogous to boys, but at lower levels, increased levels of testosterone are seen in precocious puberty.

-Ovarian or adrenal neoplasms: High estrogen values also may be observed and LH and FSH are low or "normal." Testosterone-producing ovarian or adrenal neoplasms often produce total testosterone values above 200 ng/dL.

-Polycystic ovarian syndrome. Hirsutism, acne, menstrual disturbances, insulin resistance and, frequently, obesity form part of this syndrome: Total testosterone levels may be normal or mildly elevated and uncommonly above 200 ng/dL.

 

Monitoring of testosterone replacement therapy:

The efficacy of testosterone replacement in female patients is under study. If it is used, then levels should be kept within the normal range for females at all times. Bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) or free testosterone (TGRP / Testosterone, Total and Free, Serum) levels should also be monitored to avoid overtreatment.

 

Monitoring of antiandrogen therapy:

Antiandrogen therapy is most commonly employed in the management of mild-to-moderate idiopathic female hyperandrogenism, as seen in polycystic ovarian syndrome. Total testosterone levels are a relatively crude guideline for therapy and can be misleading. Therefore, bioavailable (TTBS / Testosterone, Total and Bioavailable, Serum) or free testosterone (TGRP / Testosterone, Total and Free, Serum) also should be monitored to ensure treatment adequacy. However, there are no universally agreed biochemical end points and the primary treatment end point is the clinical response.

 

For more information see Steroid Pathways

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Early-morning testosterone levels in young male individuals are on average 50% higher than p.m. levels. Reference ranges were established using specimens collected in the morning.

 

Testosterone levels can fluctuate substantially between different days, and sometimes even more frequently. Assessment of androgen status should be based on more than a single measurement.

 

The low end of the normal reference range in pre-pubertal subjects is not yet established due to sensitivity limitations of current assay methodologies.

Supportive Data

While, particularly at low testosterone concentrations, interferences, cross-reactivity, and lack of result comparability between different assays have bedeviled testosterone immunoassays, this current method is based on liquid chromatography-tandem mass spectrometry and provides reproducible and highly accurate testosterone measurements throughout the analytical range. Therefore, results will be lower than, and not directly comparable with, results obtained by immunoassays. Most immunoassays overestimate the true testosterone concentration by 10% to 300%, depending on the assay used and whether the measured concentration falls into the low, medium, or high range.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Manni A, Pardridge WM, Cefalu W, et al: Bioavailability of albumin-bound testosterone. J Clin Endocrinol Metab. 1985 Oct;61(4):705-10

2. New MI, Josso N: Disorders of gonadal differentiation and congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 1988 Jun;17(2):339-366

3. Morley JE, Perry HM III: Androgen deficiency in aging men: Role of testosterone replacement therapy. J Lab Clin Med. 2000 May;135(5):370-378. doi: 10.1067/mlc.2000.106455

4. Sizonenko PC, Paunier L: Hormonal changes in puberty III: Correlation of plasma dehydroepiandrosterone, testosterone, FSH and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison's disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab. 1975 Nov;41(5):894-904

5. Goudas VT, Dumesic DA: Polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1997 Dec;26(4):893-912

6. Braunstein GD: Androgen insufficiency in women: Summary of critical issues. Fertil Steril. 2002 Apr;77 Suppl 4:S94-99

7. Juul A, Skakkebaek NE: Androgens and the aging male. Hum Reprod Update. 2002 Sep-Oct;8(5):423-433

8. Hackbarth JS, Hoyne JB, Grebe SK, Singh RJ: Accuracy of calculated free testosterone differs between equations and depends on gender and SHBG concentration. Steroids. 2011 Jan;76(1-2):48-55

9. Goldman AL, Bhasin S, Wu FCW, et al: A reappraisal of testosterone's binding in circulation: Physiological and clinical implications. Endocr Rev. 2017 Aug;38(4):302-324

Method Description
Describes how the test is performed and provides a method-specific reference

Deuterated stable isotope (d3-testosterone) is added to a 0.2 mL serum sample as internal standard. Protein is precipitated from the mixture by the addition of acetonitrile. The testosterone and internal standard are extracted from the resulting supernatant by an online extraction utilizing high-throughput liquid chromatography. This is followed by conventional liquid chromatography and analysis on a tandem mass spectrometer equipped with a heated nebulizer ion source.(Wang C, Catlin DH, Demers LM, et al: Measurement of total testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab. 2004;89:534-543; Taieb J, Mathian B, Millot F, et al: Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in Sera from 116 men, women, and children. Clin Chem. 2003;49:1381-1395)

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Monday through Saturday

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

2 to 4 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

2 weeks

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

84403

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
TTST Testosterone, Total, S 2986-8
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
8533 Testosterone, Total, S 2986-8

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | PHP Pdf | CMS Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports