Test Catalog

Test Id : CVHBG

Comprehensive Cerebrovascular Gene Panel, Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Providing a genetic evaluation for patients with a personal or family history suggestive of a monogenic condition in which there is an increased risk for a cerebrovascular accident

 

Establishing a diagnosis of a monogenic condition in which there is an increased risk for a cerebrovascular accident

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 30 genes associated with monogenic conditions in which there is an increased risk for cerebrovascular accident (stroke): ACTA2, ACVRL1, ADA2, CBS, CCM2, COL3A1, COL4A1, COL4A2, CST3, ENG, EPHB4, GDF2, GLA, GUCY1A1, HTRA1, KRIT1, NOTCH3, PDCD10, RASA1, RNF213, SLC2A10, SMAD2, SMAD3, SMAD4, TEK, TGFB2, TGFB3, TGFBR1, TGFBR2, and TREX1. See Targeted Genes and Methodology Details for Comprehensive Cerebrovascular Gene Panel and Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for monogenic conditions in which there is an increased risk for a cerebrovascular accident (stroke).

 

Prior Authorization is available for this assay.

Method Name
A short description of the method used to perform the test

Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Cerebrovascular Gene Panel

Aliases
Lists additional common names for a test, as an aid in searching

CADASIL

Capillary malformation-arteriovenous malformation

CARASIL

CCM

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy

Cerebral cavernous malformations

Cerebral small vessel disease

Cerebrovascular accident

COL4A1

COL4A2

CVA

CV-AVM

Hemorrhagic stroke

Hereditary angiopathy with nephropathy, aneurysms, and muscle cramps

Ischemic stroke

Moyamoya disease

NextGen Sequencing Test

Stroke

Small vessel disease

SVD

Specimen Type
Describes the specimen type validated for testing

Varies

Ordering Guidance

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

 

Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Shipping Instructions

Specimen preferred to arrive within 96 hours of collection.

Necessary Information

Prior Authorization is available, but not required, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Acceptable: Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred)/Refrigerated

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Forms

1. New York Clients-Informed consent is required. Please document on the request form or electronic order that a copy is on file.

The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

2. Connective Tissue/Cerebrovascular Disease Genetic Testing Patient Information

3. Cerebrovascular Gene Panel (CVHBG) Prior Authorization Ordering Instructions

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the Testing Laboratory

1 mL

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Varies Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Providing a genetic evaluation for patients with a personal or family history suggestive of a monogenic condition in which there is an increased risk for a cerebrovascular accident

 

Establishing a diagnosis of a monogenic condition in which there is an increased risk for a cerebrovascular accident

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 30 genes associated with monogenic conditions in which there is an increased risk for cerebrovascular accident (stroke): ACTA2, ACVRL1, ADA2, CBS, CCM2, COL3A1, COL4A1, COL4A2, CST3, ENG, EPHB4, GDF2, GLA, GUCY1A1, HTRA1, KRIT1, NOTCH3, PDCD10, RASA1, RNF213, SLC2A10, SMAD2, SMAD3, SMAD4, TEK, TGFB2, TGFB3, TGFBR1, TGFBR2, and TREX1. See Targeted Genes and Methodology Details for Comprehensive Cerebrovascular Gene Panel and Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, familial screening, and genetic counseling for monogenic conditions in which there is an increased risk for a cerebrovascular accident (stroke).

 

Prior Authorization is available for this assay.

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

There are many known monogenic conditions that increase an individual’s risk for cerebrovascular accident or stroke. Most of these conditions are characterized by abnormal vascular development, abnormal intracranial blood flow, and weakening of the cerebral vessels. Depending on the pathophysiology of the associated condition, risk may be increased for ischemic stroke, hemorrhagic stroke, or both.(1)

 

Several vascular malformation syndromes are associated with an increased risk for stroke due to abnormalities in vascular development throughout the body.(1) Pulmonary arteriovenous malformations (AVM) are common features of autosomal dominant hereditary hemorrhagic telangiectasia and autosomal dominant capillary malformation-AVM. Pulmonary AVM increase the risk for ischemic stroke by allowing emboli to bypass the lungs and enter the cerebral vasculature.(1) Autosomal dominant familial cerebral cavernous malformation causes abnormal development of capillary channels within the brain and is associated with an increased risk for hemorrhagic stroke.(1,2)

 

Several monogenic connective tissue conditions leading to vascular fragility are associated with an increased risk for arterial dissection and ischemic stroke.(1) These conditions lead to defects impacting the structural integrity of blood vessels throughout the body resulting in a high risk for vessel rupture. This panel assesses several vascular fragility syndromes, including autosomal dominant vascular Ehlers-Danlos syndrome, autosomal dominant Loeys-Dietz syndrome, autosomal dominant familial aortic aneurysm and dissection, and autosomal recessive arterial tortuosity syndrome.(3-6)

 

Hereditary cerebral small vessel disease (SVD) is a group of conditions generally characterized by lacunar infarcts and white matter hyperintensities on magnetic resonance imaging and an increased risk for ischemic and/or hemorrhagic stroke.(1,7) The monogenic SVDs assessed on this panel include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), autosomal dominant retinal vasculopathy with leukodystrophy, autosomal dominant COL4A1-associated SVD, and autosomal dominant COL4A2-associated SVD.(1, 7)

 

Moyamoya disease, a condition characterized by progressive narrowing of the blood vessels and an increased risk for ischemic stroke, can be inherited in an autosomal dominant manner. However, in most individuals, the genetic etiology (if any) remains unknown.(1,8)

 

Other conditions associated with increased risk for ischemic and hemorrhagic stroke assessed on this panel include autosomal dominant Fabry disease, autosomal dominant homocystinuria due to variants in the CBS gene, and autosomal recessive adenosine deaminase 2 deficiency.(1,9)

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

An interpretive report will be provided.

Interpretation
Provides information to assist in interpretation of the test results

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(10) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Clinical Correlations:
Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

 

If testing was performed because of clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

 

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

 

Technical Limitations:
Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

 

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

 

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

 

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

 

Genes may be added or removed based on updated clinical relevance. Refer to the Targeted Genes and Methodology Details for Comprehensive Cerebrovascular Gene Panel for the most up to date list of genes included in this test. For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

 

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent heterologous blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

 

Reclassification of Variants:
At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time.

 

Variant Evaluation:
Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline.(10) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

 

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

 

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. Incidental findings may include, but are not limited to, results related to the sex chromosomes. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Tan RY, Markus HS: Monogenic causes of stroke: now and the future. J Neurol. 2015 Dec;262(12):2601-2616. doi: 10.1007/s00415-015-7794-4

2. Zafar A, Quadri SA, Farooqui M, et al: Familial cerebral cavernous malformations. Stroke. 2019 May;50(5):1294-1301. doi: 10.1161/STROKEAHA.118.022314

3. Byers PH: Vascular Ehlers-Danlos syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 1999. Updated February 21, 2019. Accessed July 15, 2022. Available at /www.ncbi.nlm.nih.gov/books/NBK1494/

4. Loeys BL, Dietz HC: Loeys-Dietz syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2008. Updated March 1, 2018. Accessed July 15, 2022. Available at www.ncbi.nlm.nih.gov/books/NBK1133/

5. Milewicz DM, Regalado E: Heritable thoracic aortic disease overview. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2003. Updated March 1, 2018. Accessed July 15, 2022. Available at www.ncbi.nlm.nih.gov/books/NBK1120/

6. Callewaert B, De Paepe A, Coucke P: Arterial Tortuosity Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2014. Updated July 14, 2022. Accessed December 14, 2017. Available at www.ncbi.nlm.nih.gov/books/NBK253404/

7. Litak J, Mazurek M, Kulesza B, et al: Cerebral small vessel disease. Int J Mol Sci. 2020 Dec;21(24):9729. doi: 10.3390/ijms21249729

8. Shang S, Zhou D, Ya J, et al: Progress in moyamoya disease. Neurosurg Rev. 2020 Apr;43(2):371-382. doi: 10.1007/s10143-018-0994-5

9. Aksentijevich I, Sampaio Moura N, Barron K: Adenosine deaminase 2 deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 2019. Accessed December 14, 2017. Available at www.ncbi.nlm.nih.gov/books/NBK544951

10. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-424

Method Description
Describes how the test is performed and provides a method-specific reference

Next-generation sequencing (NGS) and Sanger sequencing are performed to test for the presence of variants in coding regions, and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletion/insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp, and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Comprehensive Cerebrovascular Gene Panel for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)

 

Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

 

Genes analyzed: ACTA2, ACVRL1, ADA2, CBS, CCM2, COL3A1, COL4A1, COL4A2, CST3, ENG, EPHB4, GDF2, GLA, GUCY1A1, HTRA1, KRIT1, NOTCH3, PDCD10, RASA1, RNF213, SLC2A10, SMAD2, SMAD3, SMAD4, TEK, TGFB2, TGFB3, TGFBR1, TGFBR2, and TREX1

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

Supplemental

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Varies

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

28 to 42 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

Whole blood: 2 weeks (if available); Extracted DNA: 3 months

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

81405 x5

81406 x3

81408

81479

81479 (if appropriate for government payers)

Prior Authorization
Prior Authorization may be required by your insurance carrier.

Insurance preauthorization is available for this testing; forms are available.

 

Patient financial assistance may be available to those who qualify. Patients who receive a bill from Mayo Clinic Laboratories will receive information on eligibility and how to apply.

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
CVHBG Cerebrovascular Gene Panel 55232-3
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
617226 Test Description 62364-5
617227 Specimen 31208-2
617228 Source 31208-2
617229 Result Summary 50397-9
617230 Result 82939-0
617231 Interpretation 69047-9
617232 Additional Results 82939-0
617233 Resources 99622-3
617234 Additional Information 48767-8
617235 Method 85069-3
617236 Genes Analyzed 48018-6
617237 Disclaimer 62364-5
617238 Released By 18771-6

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | PHP Pdf | CMS Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports