Test Catalog

Test Id : BRBST

Tickborne Bacterial, PCR and Sequencing, Blood

Useful For
Suggests clinical disorders or settings where the test may be helpful

Detecting and identifying pathogenic tickborne bacteria infecting normally sterile whole blood

 

Potential detection of bacteria that cause similar illnesses to tickborne infections

 

This test should not be used as first tier test. It should only be used when routine testing is negative.

 

This test is not recommended as a test of cure because nucleic acids may persist for long periods of time after successful treatment.

Highlights

This test is used for detection and identification of pathogenic tickborne bacteria or organisms that have a similar clinical presentation (eg, Q-fever due to Coxiella burnetii, leptospirosis) infecting normally sterile whole blood.

 

This test is optimal for situations in which tickborne bacterial infection is suspected, but other laboratory methods have failed to yield a diagnosis.

Reflex Tests
Lists tests that may or may not be performed, at an additional charge, depending on the result and interpretation of the initial tests.

Test Id Reporting Name Available Separately Always Performed
SPID2 Specimen Identification by PCR No, (Bill Only) No

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For information see Acute Tickborne Disease Algorithm.

Method Name
A short description of the method used to perform the test

16S Ribosomal RNA Gene Polymerase Chain Reaction (PCR) followed by Next Generation Sequencing (NGS)

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

Tickborne Bacterial PCR+Sequence, B

Aliases
Lists additional common names for a test, as an aid in searching

16S

16S rRNA gene sequencing

Bacterial sequencing

Broad

Broad range

Broad-range

Next Generation Sequencing

NGS

Ribosomal RNA

Sequencing

Tickborne

Tick

Tick-borne

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For information see Acute Tickborne Disease Algorithm.

Specimen Type
Describes the specimen type validated for testing

Whole Blood EDTA

Necessary Information

Specimen source is required.

ORDER QUESTIONS AND ANSWERS

Question ID Description Answers
Q00M0078 Specimen Source

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Royal blue top (EDTA), pink top (EDTA), or sterile vial containing EDTA-derived aliquot

Specimen Volume: 1 mL

Collection Instructions: If not submitting in original vial, mix well before transferring to a sterile vial.

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Specimen Minimum Volume
Defines the amount of sample necessary to provide a clinically relevant result as determined by the Testing Laboratory

0.5 mL

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

  All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Whole Blood EDTA Refrigerated (preferred) 14 days
Frozen 14 days

Useful For
Suggests clinical disorders or settings where the test may be helpful

Detecting and identifying pathogenic tickborne bacteria infecting normally sterile whole blood

 

Potential detection of bacteria that cause similar illnesses to tickborne infections

 

This test should not be used as first tier test. It should only be used when routine testing is negative.

 

This test is not recommended as a test of cure because nucleic acids may persist for long periods of time after successful treatment.

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For information see Acute Tickborne Disease Algorithm.

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

The target population is patients with suspected, but undiagnosed, tickborne bacterial infection involving normally sterile whole blood. Polymerase chain reaction (PCR) amplification of a portion of the 16S ribosomal RNA gene followed by next-generation sequencing of the amplified product can be used to detect tickborne bacterial nucleic acids in such situations, enabling a diagnosis. Ideal specimens are those that specific tickborne PCR tests or blood culture have not resulted in identifiable causative infectious agents. Due to the complexity of this test, the suspected tickborne disease testing algorithm will reflex to this assay only if specific-PCR tests are negative. The test is designed to identify mono-bacterial or poly-bacterial tickborne infections.

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

No tickborne bacterial DNA detected

Interpretation
Provides information to assist in interpretation of the test results

A positive broad-range polymerase chain reaction (PCR)/sequencing result indicates that tickborne bacterial nucleic acid was detected.

 

A negative sequencing result indicates the absence of detectable bacterial nucleic acids in the specimen but does not rule out false-negative results that may occur due to sampling error, sequence variability underlying the primers, the presence of bacterial nucleic acids in quantities less than the limit of detection of the assay, or inhibition of PCR amplification. If testing shows evidence of PCR inhibition, it will be repeated. If inhibition is again detected, the result will be reported as "PCR inhibition present."

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

This test does not detect nonbacterial organisms (eg, viruses, fungi, helminths, protozoa).

 

False-positive results are theoretically possible if patient specimens are contaminated with bacterial nucleic acids from the environment or patient microbiota (eg, skin microbiota contamination).

 

This test is validated for whole blood only.

Supportive Data

Fifty-two positive patient specimens were available for accuracy studies and correlated with results of organism-specific polymerase chain reaction (PCR). In addition, 20 negative samples from previous PCR testing were evaluated in verification. Using criteria established in verification, overall sensitivity of the assay is 82.7%, and specificity is 100% compared to single-analyte PCR tests. Sensitivity was lower due to the suboptimal recovery of Borrelia burgdorferi and increased to 97.4% without B burgdorferi included. A comment is added to reports that will reflect the limitations of detecting this organism.

 

The limit of detection was determined using four different organisms (Enterococcus gallinarum, Pseudomonas aeruginosa, Leptospira interrogans, and Anaplasma phagocytophilum) with an average sensitivity of 27 colony forming units per mL of whole blood for E gallinarum and P aeruginosa, and 63 copies per mL of whole blood for L interrogans and A phagocytophilum.

 

Specificity was tested using a panel of 10 nucleic acid extracts from viral, fungal, and parasitic organisms. No cross-reactivity to these organisms was observed.

 

Inclusivity studies were performed by sequencing 56 samples representing diverse types of bacteria (including tickborne bacteria). All bacteria were detected and correctly identified by next-generation sequencing.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

Kingry L, Sheldon S, Oatman S, et al. Targeted metagenomics for clinical detection and discovery of bacterial tick-borne pathogens. J Clin Microbiol. 2020;58(11):e00147-20. doi:10.1128/JCM.00147-20

Method Description
Describes how the test is performed and provides a method-specific reference

The test utilizes DNA extraction from EDTA whole blood and polymerase chain reaction (PCR) of a highly variable fragment of the 16S ribosomal RNA (rRNA) gene. If present, the amplified DNA is sequenced to obtain identification of the source organism from the patient sample. Specimens undergo total nucleic acid extraction, and the purified eluate is produced by the MP96 (Roche Diagnostics). The DNA eluate is concentrated two-fold from the specimen input volume. PCR is performed on a LightCycler 480II instrument (Roche Diagnostics) to amplify approximately 530 base pairs (bp) of the bacterial 16S rRNA gene (V1-V3, exact length varies by species) with SYBR Green DNA detection.

 

Amplification inhibition is detected with a second PCR reaction performed using the extracted specimen spiked with a low concentration of positive control DNA. Due to high crossing point values reflecting the low abundance of pathogens, all patient samples for this test will undergo next-generation sequencing (NGS).

 

Samples are sequenced using NGS on a MiSeq sequencing platform (Illumina). The NGS process generates 500 bases of sequencing reads (250 bp in the forward and reverse directions). Due to the size of amplicon generated, there is a gap in coverage between forward and reverse sequences. Verification results and in silico analysis have demonstrated that forward sequence results (> or =210 bp) offer the same bacterial identity as full-length amplicon sequence for all organisms that can be reported by this assay. Quality filtering and results generation from NGS files is performed with Pathogenomix cloud-based software (RipSeq NGS).

 

High-quality sequence (Q > or =30) of 210 bp or more in length are sorted into clusters based on the observed sequence and used for identification. Positive and negative controls are used throughout all processes to ensure assay performance. Forward and reverse sequences are analyzed to determine bacterial identity using the cloud-based analysis program RipSeq NGS (Pathogenomix).(Rodino KG, Wolf MJ, Sheldon S, et al. Detection of tick-borne bacteria from whole blood using 16S ribosomal RNA gene PCR followed by next-generation sequencing. J Clin Microbiol. 2021;59(5):e03129-20. doi:10.1128/JCM.03129-20)

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

No

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Monday through Friday

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

14 to 28 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

7 days

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

87801-Broad Range Bacterial PCR and Sequencing

87798-Specimen Identification by PCR (if appropriate)

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
BRBST Tickborne Bacterial PCR+Sequence, B In Process
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
BRBST Tickborne Bacterial PCR+Sequence, B 76575-0

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | PHP Pdf | CMS Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports